
Methods and Recommendations for Archival Records of 
Game Development: The Case of Academic Games 

 

Eric Kaltman 
Noah Wardrip-Fruin 

Expressive Intelligence Studio 
University of California, Santa Cruz 
{ekaltman, nwf}@soe.ucsc.edu 

Christy Caldwell 
University Library 

University of California, Santa Cruz 
caldwell@ucsc.edu  

Henry Lowood 
University Library 

Stanford University 
lowood@stanford.edu 

 
 

ABSTRACT 
The future of computer game history lies in preservation. Most 
work has focused on the collection and maintenance of completed 
games, both digital and physical, but for game history to mature 
we need to look beyond singular objects and venture deeper into 
games’ development history. There is a problem, however, in that 
most development practice and technique is hidden, either by 
corporate opacity or a lack of basic techniques for preserving 
game development documentation. Three issues stand in the way: 
first, while game studies needs access to documentation, and 
game developers want to see their work remembered (and perhaps 
later “remastered”), little work has been done to promote this 
common cause; second, archives and cultural repositories need 
guidance from game studies practitioners and game designers in 
strategies for interpreting development documentation; and third, 
game developers need to organize their process and 
documentation outputs with an understanding of future 
preservation (both for their own internal use and for external 
study). In this paper, we draw on previous archival movements in 
the history of science and technology to argue for a unified 
approach to the preservation of computer game documentation. 
Our work, derived from a case study of UCSC’s game Prom 
Week, presents a first attempt at a communication strategy 
between game studies researchers, archivists, and developers in 
dealing with the organization, categorization, and storage of 
development records. We outline the development process, 
discuss numerous issues that surprised us in dealing with its 
documentation, and present recommendations and guidance for 
similar treatments of other game development work. This is an 
initial step towards a more structured interaction between 
academia, developers and archives in the informed retention of 
game documentation. Further efforts for other classes of games, 
like those developed outside academia, is necessary to create a 
holistic, discipline-wide understanding of the benefits of 
document preservation and use. By engaging in greater 
collaboration, game studies researchers, developers, and 
archivists, can begin to solve the problems facing the preservation 
of games’ creative history.  

Categories and Subject Descriptors 
K.8.0 [Personal Computing]: General – games 

General Terms 

Documentation, Design, Human Factors. 
Keywords 
game studies, game development, documentation, archives, 
preservation, history. 

1. INTRODUCTION 
As interest in the history of computer games grows, it is 
imperative that we take a hard look at the state of its long-term 
preservation. Significant effort is already underway to preserve 
singular games as executables and static collections of data [1,2]. 
Many companies now provide access to thousands of old games 
ported to newer architectures and hardware. Indeed, some   
collections of games are available immediately in a web browser, 
just a click away from any interested researcher. However, despite 
this focus on finished games, there has been no complementary 
effort focused on processes behind the creation of these games. 
This is, in part, due to the clandestine nature of game 
development, and of the general desire of any creator to mask the 
rough edges of a project, to hide “how the sausage gets made.” 
But it is also a result of the inherent complexity of computer game 
development, and the technical, aesthetic, and design 
competencies necessary to understand it. This knowledge deficit, 
of both records and expertise, privileges the study of games as 
solitary creations, played by players and interpreted as texts, 
instead of as constructed objects. People research what is 
available to research, and for game studies that does not generally 
include development documentation and source code. And there 
are certainly important questions to ask of development process 
and records: Why did a certain design decision get made? What 
alternate design approaches were tried, and what lessons were 
learned from them? How did the relationships of development 
team factor into the final output? Did parties outside the main 
development group shape decisions? What did they do to solve 
that technical problem? Without documentary access these 
questions remain unstudied and unanswered.  

The problem of documentary access for game studies researchers 
leads to an issue for any archival institution wishing to deal with 
development records. An impoverishment of scholarship about 
development process leaves archives with little guidance about 
how to handle development documentation and organization. 
Many leading institutions are beginning to ingest and archive the 
development records of seminal game designers and studios: the 
Ralph Baer Prototypes at the Smithsonian; Jordan Mechner and 
Will Wright at the Strong National Museum of Play; Steven 
Meretzky and Richard Bartle in the Special Collections of 
Stanford University Library. Although these institutions may have 

 

 



the resources and staff to provide a detailed archival treatment, 
others looking to contribute to the storage of game development 
history might not be as prepared for the challenges associated with 
archiving technically sophisticated development collections. 
Additionally, as more design and development work is conducted 
entirely inside computers and networks, the need for strategies in 
dealing with born-digital documentation is growing.  

Lack of proper storage and organization of development records 
leads, again, to a deficit of historical resources ripe for future 
game studies investigation. Additionally, the originators of 
development documentation, designers and developers, lose 
potential understanding of the history of their craft and its traces 
through time. It is thus the responsibility of the game studies, 
archival, and game development communities to steer future 
efforts towards a better, mutual understanding of game creation 
and process. This communication needs to happen from all sides 
— researchers should look more into game development process 
as a research topic, prompting more archives to seek development 
collections, and causing developers to orient towards long-term 
preservation of records.  

As game studies researchers, developers, and archivists, we 
provide, in this paper, a first attempt at an integrated preservation 
of game development documentation. We first outline the 
solutions necessary to solve the ‘archival problem’ of informed 
storage of development documentation. We then take a case study 
of a locally produced academic game, Prom Week, and try to 
cover its documentary outputs, development processes, and 
storage challenges. Along the way, we briefly highlight the 
development process before diving into documentation issues that 
surprised and challenged us, and that would be a part of any future 
work on the preservation of development documentation. 
Challenges arose with access, migration, identification, and 
collection of born-digital game assets stored in Prom Week’s 
collaborative systems (cloud storage, version control, personal 
web space, and email). Commercial document systems are not 
archivally minded; they inhibit file creation and modification 
records, ignore (or overly focus on) revision histories, and are 
susceptible to large scale data loss.  We proceed to outline our 
initial solutions for and analysis of their shortcomings. Finally, we 
provide a description of our process for storing Prom Week in our 
institutional repository, and provide recommendations for any 
future researcher, archivist or developer interested in furthering 
this work.  In short, we outline the necessary steps that, if 
expanded to a larger set of games and their documentation, would 
change the direction of game research away from studying only 
final outputs and reverse game creation’s ongoing hemorrhaging 
of its vital history. 

1.1 Archival Process and Needed Expertise 
Archival process involves two main activities: the organization of 
an archival collection, and the subsequent evaluation of the 
collected materials by an archive. Usually, an archival collection 
is not explicitly designed for ingestion into an archive (though we 
hope to make an intervention discussed below). In many cases 
archives receive collections in whatever state the owners left 
them, from meticulous to messy, and it is the archivist’s job to 
sort through and organize them for long-term storage. A pre-
ingestion disorganization is a significant roadblock to the 
understanding and clear categorization of archival documents. It is 
important that game developers become aware of the difficulties 
in saving their works to help reduce mishandling and destruction 
of their material. Further, many developers and researchers may 
not be aware of the range of documentation that future game 

studies scholars might find interesting, so we felt it necessary to 
elaborate. On the other end, many archivists (even those with 
technical specializations) might not be aware of the documentary 
context and provenance for many items in a game development 
collection, or the range of documentary information commonly 
found in development documentation.  

In the world of archives, in addition to documentary provenance, 
any methodology must also lay out guidelines for understanding 
the relative value of documents in a collection. This notion of 
documentary appraisal is a core part of any archival process. 
Appraisal is the means through which an archivist decides on the 
relevance of different types of documentation; some artifacts can 
be ignored, and conversely, others must be handled with special 
care. The knowledge required for appraisal is generally very 
specialized, and unless game developers and game studies 
researchers aid in the creation of archival processes there is a 
great risk that historically significant items can fall through the 
cracks. The implications for computer game history are 
particularly dire if there is not a concerted effort to define and 
illuminate the challenges facing game development 
documentation. 

1.2 Prom Week 
Our work here is based on a case study of the game Prom Week, 
created by a team in the Expressive Intelligence Studio (EIS) in 
the School of Engineering at the University of California, Santa 
Cruz. Prom Week is a social simulation of the relationships 
between a group of high school students in the week before their 
senior prom. It is an academic research game that incorporates a 
new artificial intelligence framework, Comme il Faut (CiF), 
allowing the students in the game to remember past events and 
build unique and nuanced relationships. As both game and 
research software, we felt it could help in revealing both the 
process of game creation and its resultant documentary traces 
from an archival perspective. Our choice to use Prom Week as a 
case study is primarily due to it having been developed in our 
collaborators lab, and the unfettered access granted by the 
development team to all of the project’s documentation and 
hosted material. Also, the development of Prom Week was 
primarily born-digital, with the development team sharing 
information through email and other network services. 

2. PREVIOUS SOURCES 
Development history, the history of the process of creating games, 
is just as important as history of the finalized software, and yet 
most historical effort only focuses on the games themselves. This 
prioritization of outputs is also present in academic contexts, 
where publications are prized and the work leading up to them is 
masked by the clean prose sent to peer-review, and where systems 
and software garner value through textual remediation. In the 
history of science and technology, efforts were made in the early 
1980s to remedy what was perceived as a lack of documentary 
records about the most significant science and technology 
research of the 20th century.  In 1983, the Joint Committee on the 
Archives of Science and Technology (JCAST) published a report, 
Understanding Process as Progress: Documentation of the 
History of Post-War Science and Technology the United States 
[3]. It provided a basis for the appraisal of documentation 
resulting from scientific research process, and argues – as we do 
for games – that preserving and understanding the documentation 
about how a project was conducted is as historically important as 
the final results. Game development, like contemporary scientific 
research, is an often-collaborative process, involving much 
exploratory and iterative work before one or more final products 



are produced, and producing records through its processes that are 
likely to be unfamiliar to a non-specialist archivist. The JCAST 
report highlights three major problems in dealing with historical 
scientific data and records. These problems map, without much 
translation, to major issues in digital computer software records 
appraisal and preservation: 
1. The amount of unpublished documentation in game 

development is not addressed (or categorized by) current 
archival practice, and it cannot be estimated based on 
experiences from other fields. 

2. There is “an absence of professional consensus on guidelines 
for the appraisal and description of archival records of 
science and technology.” This lack of consensus contributes 
to both ingest backlogs at repositories unversed in the 
material and, in some cases, might lead to the needless 
destruction of potentially valuable materials. Many 
institutions are unaware of what they have, what can be done 
with it, who would want it and what it is worth. 

3. Too little is known about the potential users of game 
documentation or “about how adequately contemporary 
[archival] practices [meet] their needs.”  

Essentially, game development is a unique technical phenomenon, 
over which there is a lack of consensus about appraisal and 
description, and a lack of knowledge about future historical value. 
The JCAST report elaborates on the need to save scientists’ and 
technologists’ research journals, research data, and other findings, 
in addition to pre-publication works and reports. It has little to 
say, however, on the process for saving and recording software 
and other computational systems and other artifacts associated 
with game development. Digital assets and systems are not well 
covered in the JCAST report and now constitute of a majority of 
the documentation generated through game development.  

To further reveal the developmental processes producing 
documentation, we relied on the idea of a “documentary probe” 
found in the Charles Babbage Institute’s (CBI) 1989 report on the 
Control Data Corporation’s records [4]. In that report different 
business processes were separated and explored through the use of 
targeted case studies of specific company products, like the CDC 
1604 computer. All documentation relating to each product was 
located and reviewed to gauge the extent and diversity of the 
entire organization’s records. This “documentary probe” allowed 
the research archivists to organically discover the business’s 
internal processes through the examination of documentation and 
to, in turn, cast light on the roles and kinds of documentation 
created by those processes. Our Prom Week case study provides a 
similar framing mechanism, below, for game development, and 
particularly academic game development, as a set of processes 
and as a collection of documentation suitable for appraisal and 
storage.  

Finally, Haas et al.’s Appraising the Records of Modern Science 
and Technology: A Guide provided insight into how to organize a 
full documentary appraisal of a research lab [5]. This included 
highlighting the organization and institutional processes at work 
behind document production, including the relationship between a 
research lab and its university, and the social interactions of 
individual researchers. Our full report provides more elaboration 
on the institutional factors affecting research documentation [6].  

3. DEVELOPMENT PROCESS 
In general, the development process for Prom Week mirrors 
similar efforts from a small independent game studio. There were 
multiple project leads (graduate students), and a large group of 

part-time contract workers (undergraduates), steering the 
development for nearly three years. Along the way, they made 
novel innovations for certain game systems, and garnered press 
and awards attention for their efforts. Our efforts began by 
contacting the developers to gain access to whatever 
documentation they could provide. Prom Week’s academic 
development context allowed us to conduct document collection 
and analysis relatively uninhibited. After gaining initial access to 
the game’s development documentation, we organized further, 
documentary-based interviews with key members of the 
development team. Interviews centered on locating additional 
sources of documentation, elaborations on confusing documentary 
traces, and on the different processes used by the developers in 
making the game. Eventually, a set of six apparent development 
processes took shape, and we then organized our documentary 
appraisal around their specific outputs. Below, we elaborate on 
the key development processes leading to document generation, 
most specifically pointing out the different types of 
documentation that future game studies researchers and game 
developers would find useful. The processes are drawn from our 
case study of an academic computer game, but the main contours 
of the processes should be familiar to anyone engaged with game 
development. Further research into each of these processes from 
game studies researchers will definitely reveal even more subtle 
documentary traces and archival process considerations. What is 
presented here is simply an initial blueprint, which, if we agree to 
it as a field, could provide essential initial guidance to non-
specialist archivists. 

3.1 Idea Formation 
Most academic research projects owe some debt to previous 
completed work.  If not explicitly dependent on work completed 
previously, the direction of a project is still likely to be aligned 
with the specific research interests of a laboratory or research 
group. Prom Week, for example, took off from a foundation built 
from an accumulation of other projects that together represented 
years of previous efforts in the fields of artificial intelligence, 
sociology, game design, and other areas of work. More generally, 
we realized that academic game development projects not only 
take established research in new directions - whether explicitly or 
not - but also like many other games take account of established 
patterns of mechanics or affordances (such as modding) of games. 
New research sometimes begins without a distinct awareness of 
where it will ultimately lead. As a result, early project 
documentation is fundamentally tied to previous areas of study; 
every researcher or archivist hoping to deal with documentation of 
academic game development should be aware of the potentially 
deep connections any project has with its predecessors and the 
resulting archival trails that may document those connections. 

Formal preparatory documentation includes: design documents 
and technical specifications, funding and grant materials, 
administrative documents, meeting notes and schedules, personal 
notebooks, collaborative online files, email lists, project websites 
and related blog posts, and project management documentation 
and services. Secondary documentation includes personal email 
correspondence, chat logs, social media interactions (like 
Facebook, Twitter, etc.), personal web sites and ephemeral online 
services (like scheduling services and group calendars). The 
delineation here is between items that are used to document the 
process for the development team and those that are documentary 
effects of the development team’s efforts. 



3.2 Physical Prototyping 
Some game designers use physical prototyping for early design 
iteration and player feedback. Physical prototyping involves the 
construction of physical analogs for components of a game play 
system and emphasizes design failure and testing. This form of 
prototyping may not be a part of all development strategies, 
especially with non-entertainment software that does not have a 
graphical component. However, since most games and user 
interfaces require visual feedback it is usually possible to 
prototype small parts of a larger system. Physical prototypes are 
usually low quality, quickly designed demonstrations of game 
play systems or visual design.  

While it is possible to store the remains of a particularly important 
physical prototype, it may also be possible to gather 
documentation about the design and art assets associated with the 
prototype as a substitute. The important thing is to document how 
the system played and the specifics of its rules. The low fidelity of 
the physical prototypes makes their corporeal remains less 
significant than the ideas and systems they describe. Prototypes 
also produce playtesting feedback, which, if recorded, can be 
valuable to understanding a game system’s evolution. Prom 
Week’s prototype was unique in that it included an initial, 
computational version of its AI system. Aside from its digital 
component (whose appraisal is covered below), Prom Week’s 
prototype featured cards, a paper game board, and character 
sheets, all of which were designed in Adobe Illustrator, a vector 
graphics program. This allowed the prototype’s assets to change 
on a whim with the development team printing out new ones as 
needed. Values for the complementary AI system also allowed for 
live tuning during play.  

3.3 Digital Prototyping 
Digital prototypes are smaller, less fulfilled versions of some 
larger, more complex technical goal, but they still often involve 
the need for organization of software development tools and 
workflows. It is at this point that the inherent complexity of 
technical development documentation comes to the fore. In 
documenting a digital prototype, an archivist may come across 
records for development environments, prototype iterations, 
platform specific resources, third-party software and libraries, 
custom peripherals and hardware, and version control and 
development management tools. Because of the digital 
prototype’s existence as a software object, much of its 
documentation will be born-digital content based on either 
compiled binaries or source code files. However, due to the 
chaotic nature of prototype development many important early 
files may either precede version control’s implementation or be 
viewed by the development team as unnecessary for inclusion in 
later documentation. Early work might be scattered across many 
locations because it occurred in the period before a stable goal and 
development trajectory formed. 

3.4 Iterative Development 
If a project is going to be the focus of a sustained development 
effort it will employ some type of development methodology to 
manage team communication, feature creation, and other 
development tasks. Iterative development focuses on creating less 
potentially unnecessary work by organizing tasks and 
development effort into shorter cycles of consistent improvement. 
Scheduling in this strategy is loose, and the onus is placed on the 
completion of specific tasks with the knowledge that they might 
end up changing or become more constrained as development 
continues. Iterative development tries to complete a certain 

minimum amount of functionality before committing to greater 
depth or complexity. In academic games and research, 
development strategies also run concurrently with academic 
publication and changes in research direction. Prom Week’s 
development progress is mirrored in publications introducing and 
relating different parts of the game’s systems and design [7,8,9]. 
In this way, academic game development strategies and academic 
research are entwined throughout the duration of a project. 

Full development processes incur additional overhead needed to 
integrate even more code, systems and features into the final 
product. Testing procedures, needed to make sure that a game’s 
code is bug-free, require the use of testing frameworks, and 
systems for reporting bugs to the development team. Common 
development support software includes version control, bug and 
task management, and unit test frameworks. Additionally, the 
development of a complex computer game requires the 
simultaneous development of programs to help with content 
generation and the digital asset pipelines. These custom 
development tools will require the same types of archival 
appraisal and scrutiny as the primary game object. 

It should be noted that iterative development is only one strategy 
for software development; there are many others but we chose to 
focus, for brevity, on the strategy used in Prom Week’s 
development. 

3.5 Release and Dissemination 
A computer game release represents the demarcation between the 
internal development process and the external experience of the 
game by a more general audience. Up until release, most of the 
documentation and design decisions hinge on the development 
team and the small community of those who have playtested and 
critiqued pre-release versions of the software. After release, the 
development shifts to accommodate feedback from a larger 
audience. More specialized game software may only have a 
limited release to a specific community of practice with more 
nuanced and targeted feedback. General release games exist in 
larger global media context and may receive international press 
attention and criticism. 

After release, the technical and project documentation is also now 
at greater risk of abandonment and obsolescence due to a shift in 
the academic and/or professional focus among the development 
team towards newer projects. 

3.6 Refactoring and Continued Development 
In some cases, release signals the end of development, and in 
others the beginning of prolonged maintenance and improvement. 
Some projects rely on data generated by a software’s release, and 
will continue generating research documentation and data for a 
significant period of time. This aspect of projects is potentially 
problematic for any preservation effort, since there is no clear 
means for continuous retention of data. Large scientific projects 
maintain and follow data management plans for continuous 
experiments, but if there is not a concerted effort by a 
development or research team to allow for long term preservation 
of data streams and/or continuous software updates, much of this 
subsequent work will be lost. 

4. DOCUMENTATION CLASSIFICATION 
Along with an analysis of the development processes, we 
organized the resulting documentation generated from our study 
into generalized categories. This section outlines the basic 
documentary classification for a development process, and then 
dives more deeply into specific, significant issues to be faced by 



any future collaborative work between games researchers, 
developers and archivists. Certain aspects of the description may 
be apparent to each audience, but the general description is 
necessary to cement basic categorizations that will be referred to 
in later sections. 

4.1 Software Development Files 
Software development files fall, broadly, into three categories: 
source code, creative content, and external assets.  

Source code documents are programming language text files that 
describe a game’s logic, manage its presentation, and interface 
with a host platform’s operating system and underlying hardware. 
However, just having the source code is not enough to run the 
game software. The source code must be translated from a human-
readable programming language into a series of instructions 
understandable by a computer’s processor. 

Creative content includes audio, visual or other structured 
representation files used by the compiled source code in the 
execution of the game.1 Sometimes creative content is included in 
the executable file, and at other times it remains separate (and is 
subsequently loaded and referenced by the executing program). 
These assets are distinct from source code in production method, 
size and consistency of format. They are produced by a wide 
variety of third party software, including audio creation, image 
manipulation and 3D modeling programs.  

External assets are any files referenced or used by the executable 
that are not produced by the development team. Sometimes source 
code will be compiled into smaller chunks that share common 
functionality; these external libraries of code are then linked to the 
executable for use when the program is running. Programmers 
borrow or license other software libraries if they do not want to 
redesign functionality already created by other programmers. Any 
functionality provided by a game but not written by the 
development team may also contain source code or even further 
software dependencies for its operation. It may, therefore not be 
possible to access all of a game’s functionality even if you possess 
all of the files created by the development team. 

4.2 Research Files  
Research documentation is any pre-publication commentary and 
data generated by the development team. Commercial game 
development incorporates various strategies for player tracking, 
gameplay metrics and achievements, and thus any information 
about data collection and retention is classed as ‘research’. Some 
of this research might not be conducted by the core development 
team, and would require more specialized knowledge of corporate 
structures to locate and store. Academic game development is 
unusual in that the development team is simultaneously building a 
piece of software and a research agenda. The game system is a 
research output, and the details of its design and implementation 
are subject to publication as it is being constructed. Any research 
files that are available, especially if they may help future scholars 
interpret the files influence on the development process, should be 
retained. 

4.3 Self-Documentation Files 
Development teams create promotional materials for press and 
conference appearances. Screenshots and gameplay videos 
document a game and provide a preview of the game play 

                                                                    
1 Source code is also “creative”, but requires different 

preservation strategies and is therefore a separate category.  

experience. When source code is unavailable, unrecoverable or 
unable to compile, promotional materials might provide the only 
understanding of how a game functioned and what it was like to 
play. Many games may not ever document themselves in this 
fashion, and it should probably be standard practice to produce 
secondary video documentation of a system functionality and user 
interaction. Documentation may also be provided for outside 
developers if the system or codebase is robust enough for external 
use. This documentation is different from internal source 
documentation in that it is for the benefit of those outside the main 
development process. Documentation provided for users and 
developers unfamiliar with the development process is valuable to 
a preservation and archival effort. Any document designed to 
share knowledge about a system for a potential developer is 
significant to its future understanding by researchers and 
interested developers. 

4.4 Further Documentation Study 
Each documentary category begs for more thorough investigation 
from researchers, and better examples from development 
collections provided to archivists. To date, there is still relatively 
little discussion of particularly salient research areas. Better 
access to software development files could tell us about the 
history or evolution of computer game technical development and 
programming strategies, which in turn would benefit not only 
game studies, but software studies and even game developers. 
Similar treatment for the aesthetic and creative documentation 
would provide even more insights and potential study by game art 
historians, and other creative output scholars. More intensive 
focus on the ways that commercial and academic entities conduct 
player-centered research will open up space for social scientists, 
humanists, and historians of science and technology, to 
understand at a deeper level the relationship between development 
practice and player experience. Additionally, promotional and 
marketing materials constitute a significant and understudied 
component of most game development cycles. A closer 
understanding of their importance to the development process is 
crucial for a full picture of game creation and distribution.   By 
collaborating to increase access and storage of important 
development documentation, researchers, developers and archives 
can provide a basis for a host of novel investigations in numerous 
humanist and technical fields.   

5. DOCUMENTARY CHALLENGES 
Our efforts to organize and appraise Prom Week’s documentation 
led to many surprising issues associated primarily with born-
digital documentation. Digital documentation is subject to a future 
necessity for migration and remediation in a way that physical 
records are not. Digital documentation is subject to continual 
maintenance for its entire archival life. Documents stored digitally 
must be suitable backed up, and maintained through data 
migration either from physical medium, or to new locations on the 
cloud.   

5.1 (Lack of) Document Organization 
Born-digital development documentation is rarely organized in a 
completely coherent manner. The ease with which files can be 
created, moved and destroyed leads to increasing organizational 
entropy as development processes continue. Certain classes of 
documentation are also privileged, with software development 
files usually stored in a managed version control repository. Other 
documentation, like research files, project management, and 
marketing materials can collect across shared network storage, on 
third party cloud services, on personal servers, and individual hard 



drives. Organizing and collecting this information is made more 
difficult if the developers followed no explicit organizational 
strategy for document creation.  

Prom Week’s version control repository held most of the project’s 
finalized documentation. Cloud services hosted additional files 
related to demonstrations, research publications, and individual 
development efforts. Both locations contained a lot of unused or 
preliminary documentation, including of abandoned features and 
revisions. Shared cloud documentation had no discernible 
organization. Developers from the team helped establish the 
pertinence of some cloud files, others remained a mystery, lost in 
the development shuffle.  

5.2 File Type Versioning and Obscurity 
Finding software to interpret all the different file types was a 
problem for Prom Week’s appraisal. We ended up identifying 60 
different file extensions associated with over 30 different 
programs. Additionally, many of the file types could be 
interpreted by multiple versions of a specific piece of software. 
For instance, Adobe Creative Suite programs, like Photoshop and 
Illustrator, share the same extensions for most of their versions. 
Some features in older files are not representable in newer 
versions of the software and vice-versa. This is an issue when you 
load an older file in a newer program; it attempts to change the 
file into a newer format, making it unreadable to the program that 
created the original file. Determining the versions of a specific file 
type are not straightforward, and though our analysis used 
multiple file identification tools, none were particularly suited to 
the diversity of game development documentation.  

Some other file types are so obscure that they may remain 
unidentified. Two examples on the above list are .vue and .lel 
files. Without extensive research (something far beyond usual 
archival considerations) it was not possible to determine what the 
files were or what program created them. Starting with the .vue 
file, which is a Visual Understanding Environment file or a Tufts 
mind-mapping software program, our identification efforts met 
with significant difficulties. All common information available 
pointed to the .vue file being a 3D geometry file, which made no 
sense in the context of Prom Week (a 2D game). After examining 
the header information of a totally different file type, a .vpk file, 
we determined that the .vpk was an archive of .vue files and that it 
was associated with Tufts University. Only after making the Tufts 
connection could we determine the origin of the file extension. 

The .lel file was even more obscure, and after significant web 
investigation, our best guess is that it was associated with a 
Windows operating system modification program. The online 
community DeviantArt provides user created programs to modify 
operating system themes and aesthetics. A program that modifies 
the Windows 7 login screen seems to have accepted .lel files. This 
is no longer verifiable, however, because there is no longer any 
trace of the program online. All links to available downloads no 
longer work. Without an explicit record of the types of programs 
used in development, it may be impossible to determine the 
content of future files. 

5.3 Email Clarity and Confusion 
Email correspondence is a major communication tool for any 
modern development team. As a tool for researchers, email 
records can reveal much about the history of project that even the 
developers may have forgotten or confused.  Development teams 
organize email lists based on function, with general 
correspondence, content creation and technical implementation 

sometimes occupying individual lists. Many teams will use 
institutional or company-centric mailing lists and subdomains. 
This makes it possible to acquire a downloaded version of a 
project’s email archive. Any email sent to a list should be 
available, with the obvious exception of emails sent between team 
members individually and not to a list. Given the existence of 
email parsing programs, as long as the email text is in a 
recognizable format or structure it should be possible for future 
researchers to interpret it. Email correspondence helps explain 
project process and structure, and also cements the development 
timeline. Developers are sometimes fuzzy on the exact timing and 
order of events; the email record can emphatically clear that up.  

The Prom Week project took years, and the members of each list 
changed over the course of that period. The emails did account for 
everyone involved in development, and even helped core 
developers to remember when certain people joined and left the 
team. Due to the length of the project, some core development 
members were unsure of what each email list actually discussed. 
Some smaller lists were created for specific, short-term purposes 
and then changed focus or were abandoned.  

5.4 Lost in the Cloud Services 
Cloud services are any online document collaboration or backup 
system controlled or managed by an outside corporation. 
Common examples include Google Drive and Docs, Box.net and 
Dropbox. These services are convenient for sharing files amongst 
team members because they ensure a consistent and safe location 
for documentation. Although the services are not uniform in 
functionality, they all share common shortcomings that can create 
problems for digital archivists and long-term preservation. The 
types of files stored on cloud services tend to be organizational 
documents, demonstration files, and non-finalized creative 
content. Removing information from these services is paramount 
as they are not designed for long-term preservation or storage and 
are subject to market forces.  

5.4.1 Access Restrictions 
Services require users to have accounts for upload and 
collaboration. Additionally, once an account is set up it needs to 
be granted access to specific files or directories. Institutions, 
therefore, need to maintain an active account on each service used 
by the development team, and then rely on team members to 
provide access. Hopefully, all development files are organized in 
a coherent fashion, otherwise document sharing might prove 
onerous for team members needing to individually share files, or 
locate them across multiple locations in a shared directory. 

5.4.2 Migration and Loss 
Once files are located and accessible, it can be problematic to 
move them off of a service. One issue is ensuring that the file tree 
hierarchy and folder organization remain intact after a download. 
Maintaining file organization is important for understanding 
development process and for locating specific files. Many services 
provide robust features for search and organization based on tags, 
keywords, and other service specific functionality. In many cases 
these organizational structures will be lost when files are 
migrated. Additionally, most services will record file creation and 
last-modified information through timestamps embedded in a 
file’s metadata. Because downloaded files may represent new 
creations from the perspective of the receiving operating system, 
this creation and modification information can be lost in transfer. 
Migration presents serious problems to file metadata integrity and 
should be handled with care when encountering files stored on 
cloud services. 



5.4.3 Revision History 
Many cloud services provide some form of file version and 
revision tracking. While this functionality is convenient for users 
of a service (in case they make an accidental change or mistakenly 
delete a file) the information associated with revisions may not be 
accessible after removal from the service. In order to save space, 
it is common for cloud service providers to keep only a certain 
number of revisions or to slowly delete revisions for files that 
have not changed over long periods. It may be possible to pay for 
service enhancements to keep revision information permanently, 
but accessing and downloading previous revisions is generally 
onerous and technically challenging. In many cases knowledge of 
proprietary Application Programming Interfaces (APIs) are 
required to access revisions and other relevant metadata. 

5.5 Dropbox   
The Prom Week team used a shared Dropbox folder for 
documentation not already stored in source control. Every team 
member had access to this folder, and that is reflected in its 
haphazard structure. There is no consistent scheme for file folder 
names, each being named for a specific task, like a conference 
publication, or a specific person (“Ben’s Stuff”). The Dropbox 
account contains over 4GB of documentation and over 4000 
individual files. The documents cover every category listed in 
previous sections, although any source code is usually from 
demonstration versions of the game or unrelated programmatic 
tasks. 

Dropbox also proved problematic because the ability to sync the 
service with a folder on a user’s local file system. When we 
synced with the Prom Week directory, all file modification dates 
were updated the day and time that we last synced, erasing the 
previous creation metadata. In the online interface, the original 
creation and modification information is present, but could only 
be extracted using custom scripting, a task well outside any 
normal archival workflow. The scripts we wrote showed that such 
information could be removed from the service, but we do not 
have recommendations for the best way to make use of it, nor how 
to attach it to specific files. Extensive file revision functionality is 
available through Dropbox’s Packrat service. The Prom Week 
team did not use that added (paid) feature and so their files have 
no accessible revision histories. 

5.6 Google Drive 
The Prom Week team stored around 40 files on Google Drive, and 
they mainly related to documentation of the development process. 
Things like task lists, prospective features, and design documents 
are among the most prevalent files.  

A project lead shared their Google Drive folder with us after we 
set up an account on the service. All files were stored in a single 
folder. Google Drive’s interface allows you to share individual 
files located anywhere on the service, making it potentially 
problematic if a number of development files are located outside 
of a shared folder. Google documents also have no fixed logical 
form. When downloading a document from the service, the online 
file is converted into a variety of formats based on user request. 
Therefore, migration and information loss must be immediately 
considered when dealing with these files. Google documents also 
record document histories and revisions, but they are sometimes 
overly specific. Additionally, Google Drive culls old revisions at 
regular intervals if there is no recent activity. If a file is being 
heavily edited, however, the revision history will list every minute 
edit by each individual. Clarifying a consistent policy for revision 
tracking will be paramount in dealing with a potential deluge of 

revision files in Google cloud services. Exporting eliminated all 
revision history and file modification information. As with 
Dropbox, we were able to recover that information from Google 
through their JavaScript API, but have not solved what to do with 
the metadata nor what final form it should take.  

5.7 Version Control  
Prom Week used version control to manage all source code and 
technical implementation documentation. The project used 
Subversion, a centralized version control system. Subversion, 
abbreviated as “svn”, is the default version control software for 
the School of Engineering at UC Santa Cruz. A shared server 
hosted all student projects and managed access through standard 
university accounts. The Prom Week project lead granted us 
access to the source repository and we had no trouble copying all 
development and repository files. A slight note, during the course 
of our investigation the svn server changed domains. As a result 
most of the development team did not know exactly where their 
files were for a brief period. Luckily because Prom Week is still 
an active research project, team members almost immediately 
remedied the situation. An older project or one without recent 
activity might have been lost entirely.  

Prom Week’s source files include numerous versions of the game, 
along with demonstration versions and related side projects. This 
makes finding the actual files responsible for the final game rather 
difficult, but provides a rich set of materials of potential interest to 
future researchers. Additionally, external dependencies are mixed 
in with source files, making it sometimes hard to identify files 
created by the research team. Many research dead ends and half-
implemented features are present, still lingering in sub-directories, 
which again compounds the trouble of finding a singular set of 
development documentation while simultaneously offering 
important future insights. The repository is a representation of the 
hectic, dynamic environment of research software development. 
Prom Week’s documentary complexity is not unique, after years 
of development most software projects will contain a significant 
amount of dead code and abandoned effort. For appraisal it is 
most useful to just save everything in the repository, since it will 
not be immediately obvious which files are important to the 
project or future researchers.  

6. STORAGE AND REPOSITORY 
The University of California Library provides digital repository 
storage services through the Merritt digital repository. Files stored 
for long-term preservation are indexed and searchable based on 
title-level descriptors (like title and creator). Larger groups of files 
are compressed and uploaded to the service where content listings 
of individual files are automatically created. To upload Prom 
Week, its documentation was broken up into 24 zip archives 
containing all digital documentation for the project and recordings 
of the interviews conducted for this work.  
1. Organizing all documentation into coherent chunks for 
compression   

Prom Week’s documentation was grouped (by the development 
team) according to online services. That is, the original born-
digital file organization consisted of: shared folders on Dropbox 
and Google Drive; email archives for development mailing lists; 
source code and finalized creative content in Subversion version 
control; directories from personal websites of the development 
team; and directories from team development blogs. 

Individual interviews with the development team were stored, 
with topical indexes, in separate compressed archives. All data 



stored on online services was left with its original file 
organization and hierarchy, even if that made organization less 
clear.      
2. Creating a file manifest for the compressed documentation 

The manifest is a spreadsheet describing the title (general 
description), original creation date and creator for each archive, in 
addition to a hashed checksum for file verification. Descriptions 
are necessary for search and indexing in the digital repository. 
Titles included an overview of the contents of each archive and 
(when applicable) the version of the storage software used.  
3. Uploading finalized compressed content to the repository  

After validating the files according to the generated checksums, 
each file is paired with its descriptive information and available 
for download from the repository.    

Prom Week’s combined documentation included: an archive of all 
project mailing lists; the content’s of the team’s Dropbox and 
Google Drive folders; 13 developer interviews (with topical 
indexes); an Archive-It.Org web crawler archive of the team’s 
online demos and blog; a current development snapshot from their 
Subversion repository, and a copy and dump of the entire 
repository itself. Prom Week’s development documentation 
totaled over 7GB and 17,000 files, all of which are now available 
for download. 

7. RECOMMENDATIONS  
Our organization and appraisal of Prom Week led to a realization 
that there are many possible ways to improve the archivability of 
game development documentation generally and at educational 
institutions specifically. Below is a set of the most salient 
recommendations that became apparent through our research. 
Most of the recommendations are directed at academic 
researchers, and focus on making them more aware of the archival 
issues associated with modern software development methods. 
But we believe that any organization, commercial or not, could 
benefit from these recommendations, as they lend themselves to 
better organization and classification of born-digital content.  

1. Establish a laboratory- or department-wide data management 
policy that outlines how data will be collected, organized, 
described and archived, according to the standards of the 
intended institutional or discipline-specific data repository. 

2. Produce data and documentation in formats that are easily 
archivable or can be converted to easily archivable form. 

3. Store all relevant development documentation in as few 
separate locations as possible. Create a manifest or directory 
that describes and provides access to all project 
documentation. 

4. If possible, ensure that your source repository is available via 
the open Internet in read-only form. 

5. Provide source control check in comments that are 
descriptive and can be understood by repository managers 
who were not involved in your project. 

6. Record software programs used in the creation of files and 
assets (including format and version information). 

7. Conduct development correspondence on official group 
mailing lists as much as possible. 

8. Assign responsibility for digital archives and institutional 
software development archives to a specific member on the 
document appraisal team. Ensure that this team member is 

well-versed in software development processes and 
documentation. 

9. Instate data management plans for all game design and 
development projects and courses. 

10. Develop instruments (such as transfer and data deposit 
agreements) and policies for ingestion, description, and 
access with regard to institutional software development 
records.  

8. CONCLUSION 
We have outlined an approach to aid understanding, appraisal and 
retention of documentation related to games and their creative 
processes. Game creation can be a complex and confusing task for 
developers, and even more so for archival and collections staff 
untrained in game development methods and practices. As a first 
step towards alleviating some confusion in dealing with game 
development records, we have illuminated a general process 
framework, provided an appraisal of the documentation produced, 
presented an example of a digital repository approach and 
enumerated recommendations to improve academic game 
archivability. Our work argues for a more unified practice to 
address the problems facing scholars interested in historical game 
documentation, developers concerned with their historical legacy, 
and the archives tasked with organizing and maintaining historical 
software collections, in general. 

Future game studies work will be based on recovering and 
interpreting development records, and other historical 
documentation produced by game developers. Perhaps the most 
significant takeaway from our work is the need to understand that 
process documentation should be saved, that it can be stored for 
effective future use by researchers, and that input from developers 
and other experts is a key to better methods and practical use of 
development documentation. Many cultural institutions and 
archives can provide a relatively future-proof haven for 
development documentation, and it is important to explain to 
cultural institutions why game development documentation needs 
to be preserved, and to get developers to organize their 
information is a more preservable state. We have begun to 
communicate those needs in this paper, and are counting on future 
archivists, game studies scholars, game developers and others 
concerned with historical games to continue pushing for better 
methods and more direct case studies into all manor of games, 
general software, and other digital artifacts. Unless there are 
foundational strategies in place to ensure the safe storage and 
retention of historical game documentation in permanent 
institutional archives, much of game history is at risk.  

9. ACKNOWLEDGMENTS 
The work in this paper was supported by NEH Digital Start-Up 
Grant (HD-51719-13). 

10. REFERENCES 
[1] McDonough J. P. 2010. Preserving virtual worlds: Final 

Report. Graduate School of Library and Information Science, 
University of Illinois at Urbana-Champaign. 

[2] Pinchbeck D., Anderson D., Delve J., Alemu G., Ciuffreda, 
A., and Lange A. 2009. Emulation as a strategy for the 
preservation of games: the KEEP project. In DiGRA 2009-
Breaking New Ground: Innovation in Games, Play, Practice 
and Theory. 

[3] Elliott, C. A. 1983. Understanding progress as process: 
documentation of the history of post-war science and 



technology in the United States. Society of American 
Archivists. 

[4] Bruemmer, B., and Hochheiser, S. 1989. The high-
technology company: a historical research and archival 
guide. Charles Babbage Institute, Center for the History of 
Information Processing, University of Minnesota. 

[5] Haas, J. K., Samuels, H. W., and Simmons, B. T. 1985. 
Appraising the records of modern science and technology: a 
guide. Massachusetts Institute of Technology, Cambridge, 
MA. 

[6] Kaltman E., Caldwell, C., Wardrip-Fruin, N., and Lowood, 
H. 2015. A Unified Approach to Preserving Cultural 
Software Objects and their Development Histories. Center 

for Games and Playable Media, University of California, 
Santa Cruz. 

[7] McCoy, J., Treanor, M., Samuel, B., Tearse, B. R., Mateas, 
M., and Wardrip-Fruin, N. 2010. The Prom: An example of 
socially-oriented gameplay. In AIIDE, 2010. 

[8] McCoy, J., Treanor, M., Samuel, B., Mateas, M., and 
Wardrip-Fruin, N. 2011. Prom Week: social physics as 
gameplay. In Proceedings of the 6th International 
Conference on Foundations of Digital Games, 319–321. 

[9] McCoy, J., Treanor, M., Samuel, B., Reed, A. A., Mateas, 
M., and Wardrip-Fruin, N. 2013. Prom Week: Designing past 
the game/story dilemma. In Proceedings of the 8th 
International Conference on Foundations of Digital Games. 

 


